Für die Suche nach Inhalten geben Sie »Content:« vor den Suchbegriffen ein, für die Suche nach Orten geben Sie »Orte:« oder »Ort:« vor den Suchbegriffen ein. Wenn Sie nichts eingeben, wird in beiden Bereichen gesucht.

 

 

BMW: Smarte Wartung mittels Künstlicher IntelligenzZoom Button

Foto: BMW Group, Informationen zu Creative Commons (CC) Lizenzen, für Pressemeldungen ist der Herausgeber verantwortlich, die Quelle ist der Herausgeber

BMW: Smarte Wartung mittels Künstlicher Intelligenz

BMW: Smarte Wartung mittels Künstlicher Intelligenz

  • Predictive Maintenance im BMW Group Werk Regensburg – KI gestütztes System überwacht Fördertechnik in der Montage

  • Integriertes, lernendes Wartungssystem erkennt frühzeitig mögliche Störungen und vermeidet so über 500 Störminuten pro Jahr in der Fahrzeugmontage

Regensburg, 27. November 2023

Ungeplante Stillstände gar nicht erst aufkommen zu lassen. Das ist Ziel eines smarten Analysesystems in der Montage des #BMW #Group Werks #Regensburg. Predictive Maintenance bedeutet vorausschauende oder vorbeugende Instandhaltung – und genau das bietet das smarte Überwachungssystem: Durch datengesteuerte Analysen der Fördertechnikanlagen lassen sich frühzeitig mögliche Störungen erkennen und verhindern – und so wiederum lässt sich ein optimaler Produktionsfluss der Fahrzeuge aufrecht erhalten. Durchschnittlich verhindert das Künstliche Intelligenz (KI) gestützte System allein in der Regensburger Fahrzeugmontage rund 500 Störminuten pro Jahr.

Dank Datenanalyse schneller handeln und bei potenziellen Störungen vorbeugend agieren

In der Montage des BMW Group Werks Regensburg laufen die Fahrzeuge, zumeist in mobilen Gehängen befestigt oder auf Schubplattenanlagen, wie an einer Kette durch die Produktionshallen. Technische Störungen an den hochmodernen Förderanlagen können zum Stillstand der Montagebänder führen. Dies wiederum würde einen erhöhten Instandhaltungsaufwand – und damit Kosten bedeuten. Um dem vorzubeugen, hat das Innovationsteam des BMW Group Werks Regensburg ein System entwickelt, mit dem sich potenzielle technische Defekte frühzeitig erkennen – und so Produktionsverluste verhindern lassen. Davon betroffene Förderelemente können aus der Montagelinie ausgeschleust werden und abseits der Produktion repariert werden. Der Vorteil: Das Überwachungssystem benötigt keine zusätzliche Sensorik oder Hardware aus, sondern es wertet vorhandene Daten aus den verbauten Komponenten und der Steuerung der Förderelemente aus. Bei Anomalien schlägt es gegebenenfalls Alarm.

Ein Beispiel: Die Transportgehänge, mit denen Fahrzeuge durch die Montage transportiert werden, senden vielfältige Daten an die Gehängesteuerung. Diese Daten werden über die Gehänge und Anlagensteuerung an eine BMW Group eigene Predictive Maintenance Cloud Plattform gesendet. Hier beginnt die Analyse: Der Algorithmus sucht permanent nach Auffälligkeiten wie beispielsweise Schwankungen in der Stromaufnahme, Auffälligkeiten bei den Förderbewegungen oder nicht ausreichend lesbare Barcodes, die eine Störung auslösen könnten. Im Fall von Anomalien erhält die Instandhaltungs Leitzentrale eine Warnmeldung und weist diese dem diensthabenden Instandhalter zu. »In unserer Leitzentrale laufen rund um die Uhr die Überwachungsmonitore«, erklärt Projektleiter Oliver Mrasek. »Dadurch können wir bei einer Störmeldung schnell reagieren und das betroffene Gefährt aus dem Takt nehmen.«

Die Umsetzung: KI gestützt, standardisiert und kostengünstig

Predictive Maintenance ist keine Individual Lösung, betont Mrasek. Das System wurde – in Zusammenarbeit mit dem zentralen Shopfloor Management der BMW Group und anderen Werksstandorten – standardisiert, um einen Rollout an den Werkstandorten der BMW Group weltweit schnell und einfach durchzuführen. Und es ist kostengünstig. »Da wir keine zusätzlichen Sensoren benötigen, schlagen nur die Kosten für Speicher und Rechenkapazität zu Buche.«

In das System wurden auch eigens entwickelte Machine Learning Modelle implementiert. Um die Ergebnisse dieser Modelle zu visualisieren, nutzt das System so genannte Heatmaps. Mit diesen werden Auffälligkeiten durch Farbcodes dargestellt. »So können wir verschiedene Störbilder an verschiedenen Komponenten abbilden und ganz gezielt reagieren«, erläutert Mrasek.

Mittels Erkenntnissen aus der Praxis werden die Algorithmen kontinuierlich verbessert und weiterentwickelt. Aktuell ist das Team dabei, weitere Anlagen anzubinden, das System zu optimieren und Handlungsempfehlungen in die Störmeldungen zu integrieren. So kann beispielsweise bereits mit der Störmeldung der Hinweis erfolgen, welche vergleichbaren Probleme es an einer Anlage gab. Das erleichtert den Instandhaltern die Fehlersuche, zum Beispiel wenn ein Laufrad am Fördergehänge defekt ist. »Wenn wir Predictive Maintenance optimal umsetzen, spart das nicht nur Geld und wir können unsere Fahrzeuge in der geplanten Stückzahl pünktlich ausliefern. Es spart innerhalb der Produktion auch enorm viel Stress«, erklärt Deniz Ince, Data Scientist des Teams.

Das nächste Ziel: #Planbarkeit. Und 2 Patente.

Seit sechs Jahren arbeiten Mrasek und seine Kollegen an der datengesteuerten Überwachung der Fördertechnik. Heute werden bereits rund 80 Prozent der Hauptmontagelinien damit überwacht. »Natürlich lässt sich nicht jede Störung vorab erkennen oder verhindern. Aber wir vermeiden derzeit allein in der Fahrzeugmontage mindestens 500 Minuten im Jahr, an denen die Bänder stehen würden«, erzählt er. Was das bedeutet, lässt sich leicht hochrechnen. Denn nahezu jede Minute – alle 57 Sekunden – läuft im BMW Group Werk Regensburg ein Fahrzeug vom Montageband. Schon heute wird das System auch an Förderanlagen an den Werksstandorten Dingolfing, Leipzig und Berlin genutzt.

Auch die Möglichkeiten der künstlichen Intelligenz sollen noch besser genutzt werden. Das System soll lernen einzuschätzen, wie viel Restlaufzeit vom Erkennen der Störung bis zum potenziellen Stillstand verbleibt. Damit könnten die Instandhalter entscheiden, wie zeitnah sie die Wartung durchführen müssen und gegebenenfalls Prioritäten setzen. Oliver Mrasek sieht darüber hinaus weiteres Potenzial an anderen Stellen des Werks: »Wir testen aktuell, ob wir das System auch für Befüllanlagen nutzen können, die unsere Fahrzeuge zum Beispiel mit Bremsflüssigkeit und Kühlwasser betanken.«

Obwohl es bereits viele Möglichkeiten zur vorbeugenden Wartung von Anlagen gibt, ist das integrierte und lernende Regensburger System bislang einzigartig. Deshalb ist die Kompatibilität mit Predictive Maintenance bereits in den Ausschreibungen für neue Fördertechnik enthalten. Auch deren Hersteller loben das System, von dessen Auswertungen sie ebenfalls profitieren. Die BMW Group hat auf ihre Inhouse Entwicklung bereits zwei Patente angemeldet.

Die BMW Group Werke #Regensburg und #Wackersdorf

Die BMW Group versteht sich seit Jahrzehnten als Benchmark in Sachen Produktionstechnologie und operativer Exzellenz im Fahrzeugbau – auch an den Standorten Regensburg und Wackersdorf. Das BMW Group Fahrzeugwerk in Regensburg besteht seit 1986 und ist einer von über 30 Produktionsstandorten der BMW Group weltweit. Arbeitstäglich laufen im Werk Regensburg insgesamt bis zu 1.000 Fahrzeuge der Modelle BMW 1er, BMW X1 sowie BMW X2 vom Band. Sie gehen an Kunden auf der ganzen Welt. Verschiedene Antriebsformen werden flexibel auf einer einzigen Produktionslinie gefertigt – vom Fahrzeug mit Verbrennungsmotor über Fahrzeuge mit Plug in Hybrid bis hin zu vollelektrischen Modellen.

Die Hochvoltbatterien für die in Regensburg gefertigten Elektromodelle entstehen ebenfalls vor Ort, in unmittelbarer Nachbarschaft zum Fahrzeugwerk. Sie werden in der E Komponentenfertigung, am 2021 eröffneten Standort in der Leibnizstraße, montiert. Ebenso zum Standort Regensburg gehört der BMW #Innovationspark Wackersdorf. Das 55 Hektar große Gelände wurde in den 1980er Jahren gebaut und war ursprünglich für eine atomare Wiederaufarbeitungsanlage vorgesehen. Die BMW Group hat dort ihre Cockpitfertigung angesiedelt, ebenso wie die Teileversorgung von Überseewerken. Im Innovationspark Wackersdorf sind neben BMW als größtem Arbeitgeber weitere Firmen ansässig. Insgesamt arbeiten dort rund 2.500 Beschäftigte.

Die BMW Group Stammbelegschaft an den ostbayerischen Standorten Regensburg und Wackersdorf umfasst rund 9.000 Mitarbeiter, darunter mehr als 300 Auszubildende. Mehr

Content bei Gütsel Online …

Bayerische Motoren Werke AG (BMW), mehr …
Petuelring 130
80788 München
www.bmw.de

Externer Inhalt, Location Bayerische Motoren Werke AG (BMW)

Beim Klick auf das Bild wird eine Anfrage mit Ihrer IP Adresse an Google gesendet, Cookies gesetzt und personenbezogene Daten zu Google übertragen und dort verarbeitet, siehe auch die Datenschutzerklärung.
 
Gütsel
Termine und Events

Veranstaltungen
nicht nur in Gütersloh und Umgebung

November 2024
So Mo Di Mi Do Fr Sa
12
3456789
10111213141516
17181920212223
24252627282930
Dezember 2024
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
293031
Februar 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
232425262728
September 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
282930
November 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30
Dezember 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
28293031
Februar 2026
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
September 2026
So Mo Di Mi Do Fr Sa
12345
6789101112
13141516171819
20212223242526
27282930
Oktober 2026
So Mo Di Mi Do Fr Sa
123
45678910
11121314151617
18192021222324
25262728293031
November 2042
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30